Cyclophosphazenes as Nucleophiles: the Addition of Copper(ı) Cyclophosphazenes to Aldehydes and Ketones

Pieter L. Buwalda and Johan C. van de Grampel*

Department of Inorganic Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

Novel gem-alkyl(hydroxyalkyl)tetrachlorocyclophosphazenes (NPCl₂)₂NPR¹[C(OH)R²R³] have been prepared by nucleophilic addition of copper(i) cyclophosphazenes to aldehydes or ketones, followed by acid hydrolysis.

The formation of transient copper(1) cyclophosphazenes by the reaction of (NPCl₂)₃ (1) with RMgCl in the presence of [Bun₃PCuI]₄^{1,2} offers a unique opportunity of performing nucleophilic substitutions and additions using cyclophosphazenes as nucleophilic agents. The substitution of halide in alkyl halides, leading to a broad range of *gem*-dialkylcyclophosphazenes has been described by Allcock and coworkers.² Here we report some examples of a nucleophilic addition involving aldehydes and ketones, as shown in Scheme 1.

Metallophosphazene (2) was prepared in essentially the same way as described in the literature. Then 4 equiv. of aldehyde or ketone were added (except for acetone where 40 equiv. were used). The resulting mixture was stirred for 2 hours to 10 days under dry nitrogen. After hydrolysis of the

reaction mixture by a saturated aqueous NH_4Cl solution, products (3) could be obtained in a pure state by flash chromatography (silica column, tetrahydrofuran-hexane mixtures as eluant) and subsequent recrystallization from pentane (yields varying from 50 to 75%). Characterization took place by spectroscopic methods (i.r., n.m.r., and mass) and by elemental analysis. The various products (3) obtained are given in Table 1, together with their ^{31}P n.m.r. data.

As expected aldehydes appear to be more reactive than ketones (reaction time 2 vs. 10 days), whereas chloroacetone reacts within 2 hours. It is noteworthy that in the case of crotonaldehyde the 1,2-addition competes successfully with the 1,4-route, as no -CH(Me)CH₂CHO derivative could be detected in the reaction mixture.

Table 1. Compounds $(NPCl_2)_2NPR^1[C(OH)R^2R^3]$ (3); $^{31}P\{^1H\}$ n.m.r. data.a

	\mathbb{R}^2	R³	$\delta(^{31}P)/p.p.m.$					
\mathbb{R}^1			P(organosubst.)	PCl ₂ (A)	PCl ₂ (B)	AX	$^2J_{\mathrm{PP}}/\mathrm{Hz}$ BX	AB
Me	Me	Н	39.3	19.0		d	d	d
Me	Me	Ме ^ь	43.8	18.1		đ	d	d
Me	Ph	H	37.1	19.0		đ	d	d
Pr^i	Me	Н	49.3	19.3		đ	d	33.7
Pr^{i}	Ph	Н	47.3	19.3		d	d	32.6
Bu^t	Me	H	50.0	18.1	19.5	14.4	10.2	32.4
Bu^t	Me	Me	51.8	18.1		17.4		
Bu^t	CH ₂ Cl	Me	49.5	18.6^{c}		15.0		
Bu^t	CH=CHMe	H	48.9	18.3	19.6	17.0	15.2	31.5
$\mathbf{B}\mathbf{u}^{t}$	Ph	Н	49.0	18.0	19.5	14.9	12.6	31.4
Bu^t	p-NO ₂ C ₆ H ₄	H	45.3	19.3	19.9	d	d	34.0

a Solvent CDCl₃, external reference (NPCl₂)₃, δ(³¹P) = 19.9 p.p.m. b Liquid. c A₂X type spectrum. d Coupling unresolved.

$$\begin{array}{c|c}
Cl & Cl & R^{1}MgCl \\
Cl & P & P & Cl \\
Cl & P & P & Cl \\
\hline
(1) & Cl & R^{1}MgCl \\
\hline
(1) & Cl & R^{1}MgCl \\
\hline
(2) & R^{2} & Cl \\
\hline
(2) & R^{2} & Cl \\
\hline
(3) & R^{2} & Cl \\
\hline
(3) & R^{3} & Cl \\
\hline
(4) & R^{3} & Cl \\
\hline
(5) & R^{3} & Cl \\
\hline
(6) & R^{3} & Cl \\
\hline
(7) & R^{3} & Cl \\
\hline
(8) & R^{3} & Cl \\
\hline
(9) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(2) & R^{3} & Cl \\
\hline
(3) & R^{3} & Cl \\
\hline
(3) & R^{3} & Cl \\
\hline
(4) & R^{3} & Cl \\
\hline
(5) & R^{3} & Cl \\
\hline
(8) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(2) & R^{3} & Cl \\
\hline
(3) & R^{3} & Cl \\
\hline
(4) & R^{3} & Cl \\
\hline
(5) & R^{3} & Cl \\
\hline
(6) & R^{3} & Cl \\
\hline
(7) & R^{3} & Cl \\
\hline
(8) & R^{3} & Cl \\
\hline
(8) & R^{3} & Cl \\
\hline
(9) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(2) & R^{3} & Cl \\
\hline
(3) & R^{3} & Cl \\
\hline
(4) & R^{3} & Cl \\
\hline
(5) & R^{3} & Cl \\
\hline
(6) & R^{3} & Cl \\
\hline
(7) & R^{3} & Cl \\
\hline
(8) & R^{3} & Cl \\
\hline
(9) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(2) & R^{3} & Cl \\
\hline
(3) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(2) & R^{3} & Cl \\
\hline
(3) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(2) & R^{3} & Cl \\
\hline
(3) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(2) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(2) & R^{3} & Cl \\
\hline
(3) & R^{3} & Cl \\
\hline
(1) & R^{3} & Cl \\
\hline
(2) & R^{3} & Cl \\
\hline
(3) & R^{3} & Cl \\
\hline
(4) & R^{3} & Cl \\
\hline
(5) & R^{3} & C$$

Scheme 1

The presence of an asymmetric $C(OH)R^2R^3$ moiety in compound (3) can lead to ABX type $^{31}P\{^1H\}$ n.m.r. spectra caused by the diastereotopic nature of the PCl_2 groups.

The nucleophilic addition reactions are not restricted to the NP system only, as the cyclothiaphosphazene $NSOPh(NPCl_2)_2$ gives similar results.

Received, 9th July 1986; Com. 943

References

- P. J. Harris and H. R. Allcock, J. Am. Chem. Soc., 1978, 100, 6512;
 H. R. Allcock and P. J. Harris, ibid., 1979, 101, 6221.
- P. J. Harris and H. R. Allcock, J. Chem. Soc., Chem. Commun., 1979, 714; H. R. Allcock, P. J. Harris, and M. S. Connolly, Inorg. Chem., 1981, 20, 11; H. R. Allcock, P. J. Harris, and R. A. Nissan, J. Am. Chem. Soc., 1981, 103, 2256.